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Abstract 
Microarray technology makes biologists be 
capable of monitoring expression of thousands 
of genes in a single experiment on a small chip. 
How to extract knowledge and information from 
these microarray gene expression datasets has 
attracted great attention of many molecular 
biologist, statisticians and computer scientists. 
Recently, data mining has become a synonym 
for the process of extracting the hidden and 
useful information from datasets. In this paper, 
we developed a methodology to analyze the 
gene expression data by using the techniques in 
data mining such as feature selection and 
classification. We are given the leukemia 
microarry gene expression dataset that consists 
of 72 samples. Each sample has 7129 gene 
expression levels and comes with one of three 
class labels: AML, B-cell ALL and T-cell ALL. 
3571 genes were left after data preprocessing. 
We selected 30 genes out of 3571 genes by 
using feature selection technique and prescribe a 
procedure to classify every sample into the 
correct category. 
 
Keywords: microarray gene expression data, 
data mining, multicategory classification, 
clustering, support vector machine 
 
1. Introduction 
 Microarray technology makes biologists 
be capable of monitoring expression of 
thousands of genes in a single experiment on a 
small chip. Several microarray gene expression 
datasets are publicly available on the Internet 

[14, 15]. These datasets include a large number 
of gene expression values and need to have an 
accurate method to extract knowledge and 
useful information from these microarray gene 
expression datasets. 
 Support vector machines (SVMs) [12] 
have been shown have superior performance in 
the analysis of microarray gene expression data 
than other classification algorithms such as 
decision trees, Parzen windows and Fisher’s 
linear discrimination [6, 8]. Hence we will use 
SVMs as the classification tool in this paper. 

Here we use the acute leukemia dataset 
the same as Golub presented in [9] for our 
classification experiments and convert this 
multicategory classification problem into a series 
of binary classification problems. Besides, we 
propose a hierarchical model for selecting a 
small number of informative genes and 
classifying acute leukemia patients as acute 
myeloid leukemia (AML), B-cell acute 
lymphoblastic leukemia (B-cell ALL) or T-cell 
acute lymphoblastic leukemia (T-cell ALL) class 
based to those selected genes. Each level of this 
hierarchical model is composed of two phases, 
gene selection step and classifier construction 
step. Our model selects 30 genes out of 3571 
genes and can classify 34 examples into three 
categories, which are defined above correctly 
based on the training result of 38 examples. 
 This paper is organized as follows. In 
section 2 we describe the leukemia gene 
expression dataset and provide the gene 
selection criterion in details. Section 3 gives a 
basic description of the essential of the smooth 
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support vector machine (SSVM) [13]. The 
classifiers used in this work are trained by the 
SSVM. The experimental results are shown in 
section 4. Section 5 includes the contributing of 
this method and proposing some possible 
extensions of this method in the future. 
 
2. Gene selection 
 The acute leukemia dataset contains 38 
training samples and 34 independent testing 
samples. All samples have 7129 features 
obtained from the microarray. Hence there is a 
total number of 712972×  microarray gene 
expression data in this dataset. Each sample is 
labeled as AML, B-cell ALL or T-cell ALL. 
Therefore, the problem we faced is a 
multicategory classification problem. The class 
distribution of this dataset described as table 1. 
 

Table 1: Class distribution of leukemia dataset 

 Training Testing Total 

AML 11 14 25 

B-cell ALL 19 19 38 

T-cell ALL 8 1 9 

Total 38 34 72 

 
 Although there are more than 7000 
features for each sample, many of them are 
uninformative or providing redundant 
information for class distinction. Before gene 
selection phase, we need to perform some 
preliminary data cleaning in order to discard 
those uninformative genes expression data and 
reduce the number of features, so as to 
decrease the computational time in following 
steps. In the preliminary processing stage, we 
eliminate those genes whose expression values 
do not have significant differences in different 
classes. 

After this preliminary processing, we still 
retain 3571 features for each sample. For the 
sake of extracting the most informative genes for 
discriminating classes, we need a metric 
mechanism for gene selection with following 
property: The metric expressions of an 

informative gene in one class should be quite 
different from the other, but the variation in the 
same class is as little as possible [2]. We adopt 
a metric mechanism fit in with this property, 
which is presented in [9], called correlation 
metric P(gi). 
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where gi is the expression vector of ith gene 
over all training samples, +µ indicates the mean 
value of the ith gene’s expression in positive 
class, and  +σ is the standard deviation of the ith 
gene’s expression in positive class. −µ  and 

−σ  are defined for negative class in the same 
way. 
 Our goal is to select a small number of 
genes that can be used to construct robust, 
efficient and accurate classifiers for predicting 
future samples. In our experiments, we tried 
different gene selection methods such as 
choosing genes with the largest absolute value of 
P, choosing half from the top genes (highly 
correlative with positive class) and half from the 
bottom genes (highly correlative with negative 
class) or choosing only the top dozens of genes 
from all 3571 genes etc. We got the best result 
by choosing genes with the largest absolute 
value of P. Therefore, the genes that we used in 
our experiment are selected by using the 
method. 
 
3. SVMs: Support vector machines 
 SVMs are widely used in many machine 
learning and data mining problems due to the 
superior performance in data analysis. The 
SVM algorithm finds the maximum margin 
hyperplane, which maximizes the minimum 
distance from the hyperplane to the closest 
training points [6]. The function corresponds to 
the optimal hyperplane used for classifying data 
is found by solving a convex quadratic 
optimization program [5, 12, 13] defined as: 
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where υ  is a positive weight value for 
controlling overfitting, mRe ∈  is a column 
vector with all ones , nmRA ×∈  represents 
data points with m samples and n features, 

mRy ∈  is slack vector variable, and D is an 
mm ×  diagonal matrix with ones or minus ones 

along its diagonal to specify the class label of 
each sample. 
 By using smooth techniques introduced in 
[1, 13] and employing the KKT optimality 
conditions, the original problem is converted 
into the smooth support vector machine (SSVM) 
[13] defined as follows: 
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This problem can be solved by the Newton- 
Armijo algorithm [13] which has be shown 
converges globally and quadratically [13]. The 
solution of this problem will give us the linear 
classification function: 
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For a new unlabeled sample x, we plug it 
into the classification function. If the output 
value 0)( >xf , we classify this sample into 
positive category otherwise we classify it into 
negative category. In our experiments, all 
classifiers are established based on the SSVM 
algorithm. 
 
4. Experiments and results 
 The leukemia dataset splits into AML, 

B-cell ALL and T-cell ALL categories. But the 
classifiers we build via SSVM algorithm are 
binary classifiers. Hence we have to convert this 
multicategory classification problem into a series 
of binary classification problems. 
 We calculate the distances between these 
three classes using their means of gene 
expression values. The distance between ALL 
(including B-cell ALL and T-cell ALL) and 
AML is larger than the distance between B-cell 
and T-cell ALL. So, it is nature to conclude that 
the difference between ALL and AML is more 
significant than B-cell ALL and T-cell ALL. 
This result consists with [2, 7, 9] and represents 
that the preliminary and normalization 
processing described in section 2 without 
changing the characteristics of expression data 
in different categories. Then the initial 
hierarchical classification model was built as 
Figure 1. 
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There are two diamonds we can see in figure 1. 
Each of them represents a classification function 
established by SSVM with linear kernel and 
deals with its own classification problem. 
 Combining with gene selection steps, we 
can get our hierarchical two-phase classification 
model, shown as figure 2. The dashed boxes 
are our two-phase classifiers. In the ellipses of 
gene selection I and gene selection II, 10 and 
20 genes out of 3571 are selected for their own 

Figure 1. The initial hierarchical classification model 
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classification tasks, respectively. The reasons 
that use 10 and 20 genes at different level are 
decided by accuracy, stability and robustness of 
SSVM classifiers built. 
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 In order to fit these requirements, 10 genes 
for AML/ALL classifier and 20 genes for 
T-cell/B-cell classifier provid the best results in 
our experiments. 
 According to this model, 30 genes out of 
3571 are selected and the two SSVM 
classifiers are also established when the training 
data was input. In testing stage, we can input 
data with genes sorted or unsorted. This 
hierarchical two-phase classification model will 
select genes correctly by itself at each level and 
classify testing data accurately. 
 The numerical results of our experiments 
and some other researchers’ are summarized in 
table 2. The number of genes we used here is 
not the smallest subset that can archive the best 
result. Actually, we need only 18 genes (8 for 
AML/ALL classifier and 10 for B-cell/T-cell 
classifier) to have the same results in table 2 by 
advanced gene selection steps. But the built 
classifiers are too sensitive when noise data 
involved, and degrading the robustness and 
generic ability of classifiers. Hence we intend to 
use more genes but build robust classifiers. 

For the purpose of showing the 30 genes 

selected for building two SSVM classifiers are 
informative, we depicted the means of these 
genes’ expression data correspond to different 
classes in figure 3, 4, and 5. In figure 3, the 
means of 10 genes used for building ALL/AML 
SSVM classifier are graphed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Similar to figure 3, figure 4 depicts the 
means of 20 genes used for building 
B-cell/T-cell SSVM classifier. It is apparent in 
these two figures that the means of identical 
gene respect to different classes are significantly 

Table 2: Comparison of experimental results 
(Tested by 34 independent testing samples) 

Author ALL / AML B-ALL / T-ALL 

 # of 

genes 

Errors # of 

genes 

Errors 

T. Golub et al. [9] 50 2 N / A N / A 

S. Mukherjee et al. 

[7] 

99 0 999 0 

T. Furey et al. [10] 25 2 250 0 

I. Guyon et al. [3] 8 0 N / A N / A 

D. Slonim et al. [2] 50 2 50 1 

J Weston et al. [4] 20 0 5 0 

Rui Xu et al. [11] 10 1 N / A N / A 

Our Results 10 1 20 0 

Figure 2. Hierarchical two-phase classification model 

Figure 3. Means of 10 selected genes respect to ALL 
and AML categories. X-axis represents only a serial 
number of selected genes and without any specific 
meaning. Y-axis represents the mean value of selected 
gene expression data respects to different classes. The 
same specify is used in figure 4 and figure 5. 
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dissimilar. Through these genes we can obtain 
sufficient information to build superior classifiers. 

Finally, the means of all 30 genes selected 
by us are combined in figure 5. The genes 
correspond to x-axis from 1 to 10 are the same 
as the genes in figure 3, and genes numbered 
from 11 to 30 are the same as graphed in figure 
4. We can obvious see that the means of gene 
expression data respect to AML are 
dramatically different from the means respect to 
two different ALL types in first 10 genes. And 
the means of last 20 genes respect to B-cell and 
T-cell samples are apparent different. By these 
figures we believed that the genes we used for 
establishing SSVM classifiers are informative 
and representative. 
 
5. Conclusions and future works 

To propose an efficient and powerful 
method for microarray gene expression data 
analysis is the object of this paper. Therefore, 
we design a hierarchical two-phase classification 
model to achieve this goal and get acceptable 
numerical results. We not only substantially 
reduce the number of genes needed from 7129 
to 30, but also build classifiers with superior 
classification ability by using those limited 
informative genes. 
 In future works, we will apply this model 
to more different types of microarray gene 

expression datasets, more complicated kernels 
may be used and hope to get acceptable 
numeric results like in this leukemia dataset. In 
addition to, the function used to evaluate gene 
expression respect to different classes may be 
replaced by a more complex function instead of 
average function. The final goal we hope to fulfill 
is making all processing steps visualized as 
graphs rather than only numeric computation. 
For example, we may use only graphs like figure 
3, 4 or 5 to accomplish gene selection steps and 
classify unknown samples (include multicategory 
classification) directly according to some 
information get from graphs. If this object can 
be achieved, the time needed for analyzing 
microarray gene expression data will be saved 
further, and the processes will be more 
understandable. 
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